
Sensors and Actuators A 114 (2004) 197–203

Micromachined silicon force sensor based on diffractive optical
encoders for characterization of microinjection

X.J. Zhanga,∗, S. Zappea, R.W. Bernsteinb, O. Sahina, C.-C. Chena,
M. Fishc, M.P. Scottc, O. Solgaarda

a Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
b Department of Microsystems, SINTEF Electronics & Cybernetics, Oslo, Norway

c Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA

Received 11 November 2003; accepted 21 November 2003

Available online 22 January 2004

Abstract

We present a micrograting-based force sensor integrated with a surface micromachined silicon-nitride probe for penetration and injection
into Drosophila embryos. The probe is supported by springs of a known spring constant, and the penetration force is determined from
displacement measurements using a high-resolution, miniaturized optical encoder that is designed to only be sensitive to axial deflections of
the probe. The optical-encoder force sensor exhibits configurable sensitivity and dynamic range, allowing monitoring over a wide range of
forces. The periodicity of the encoder response can be used for calibration of the injector displacement and to obtain information about the
localized elastic properties of the target. We used an force sensor with a measured spring constant of 1.85 N/m for penetration experiments
on Drosophila embryos, and found a penetration force of 52.5�N (±13.2%) and a membrane displacement of 58�m (±5.2%).
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Localized and accurate microinjection of genetic mate-
rial into biological model systems, such as Drosophila, will
enable a variety of studies of developmental biology and
genetics[1]. For such studies to be carried out in vivo, the
damage caused by the injection must be minimized. We have
developed surface micromachined silicon-nitride injectors
[2] with integrated force sensors for measurements of the
penetration force and needle–membrane interactions under
various physiological conditions.

The force sensor is an optical encoder based on trans-
mission phase gratings integrated with the injector. Precise
displacement measurements using diffractive gratings is an
established technology[3], and optical encoders have been
developed for precise measurements of displacement and
revolution angle for a variety of applications. However, the
large size and expensive manufacturing of conventional en-
coders make them unsuitable as integrated sensing devices.
Recently, there has been significant renewed interest in using
diffractive micro-optical elements as displacement sensors
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in atomic force microscopes (AFM)[4], MEMS capacitive
ultrasonic transducers[5] and accelerometers with nano-g
resolution[6]. For optical encoders, Sawada et al. demon-
strated a hybrid integrated encoder with a single grating on
silicon [7]. Hane et al. designed a dual-grating miniaturized
displacement sensor using grating imaging[8]. These ad-
vancements in microfabricated diffractive grating optics en-
able integrated optical encoders for sensing and microscopy
of embryos and single cells.

2. Operational principles and design

As shown inFig. 1, the force encoder consists of two
identical constant-period transmission phase gratings that
are vertically aligned when no force is applied. Phase grat-
ings are used because they have higher optical diffraction
efficiency than amplitude gratings[9]. When a force is ap-
plied to the injector (not shown inFig. 1) in thex-direction,
the upper index grating is displaced with respect to the bot-
tom grating. This changes the diffraction efficiency of the
phase grating, and the relative position of the two gratings
can be determined by the intensities in the diffraction or-
ders. The diffraction characteristics of the dual transmission
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Fig. 1. Principle of the injection-force encoder: 2L is the period of the
grating with 50% duty cycle;d = mod(x, 2L) is the displacement of the
microinjector modulus 2L; φ0 represents a relative phase delay over the
thickness of one grating finger.

phase grating can be analyzed by Fraunhofer diffraction the-
ory. The first diffraction mode intensityI1(d) is a periodic
function of injector displacement:
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where I0 is the illuminating light intensity,N the number
of grating periods under illumination,φ0(x) = (2π/λ)(n1 −
n0)t is the phase delay over the thickness of one grating fin-
ger, 2L the period of the grating,d the displacement of the
injector modulus 2L. We define the force-sensor sensitivity
as the change in the intensity of the first diffraction mode
with respect to a unit displacement of the upper grating. The
dynamic range is defined as the total range of motion over
which the position can be unambiguously determined from
the diffraction pattern. FromEq. (1)we see that the sensitiv-
ity and dynamic range of the sensor can be tuned by chang-
ing the number of grating fingers,N, that are illuminated
and/or by changing the grating period,2L.

The encoder is designed to be sensitive to translation in
the x-direction, while the sensitivities to the other 5 de-
grees of freedom of motion are minimized. Translation in
the y-direction can be neglected because it is small(ky �
kx) and has little effect on the optical readout. Likewise, ro-
tation about thex and y axes do not affect the diffraction
of the gratings and can therefore be ignored. Motion in the
z-direction is also inconsequential, because the weak reflec-
tions from the grating elements lead to only small varia-
tions of the phase shift through the encoder as a function
of the separation of the gratings in thez-direction. To en-
sure weak reflections, the grating elements must be designed
such that the fields reflected from their fronts and backs

interfere destructively. We achieve destructive interference
by using grating made of silicon nitride with a refractive
index of n1 ≈ 1.9 and a thickness oft = 1.5�m. Thus
the phase shift (4π/λ)n1t associated with traversing the grat-
ing film twice is approximately an integer multiple of 2π at
HeNe wavelengthλ = 633 nm. Combined with theπ phase
shift of the internal reflection at the nitride/air interface, this
leads to destructive interference of the two parts of the re-
flected field, and therefore the reflection from the grating el-
ements is minimized. Accurate control of the film thickness
can be achieved by monitored etch-back after film deposi-
tion. Silicon nitride is well suited for our gratings, because
its index allows us to minimize the back reflections and at
the same time achieve a relatively high value (∼0.5) for the
factor sin2(φ0) that determines the diffraction efficiency (see
Eq. (1)). The remaining degree of freedom of motion is ro-
tation about thez-axis. The encoder is sensitive to such ro-
tation, so it must be minimized. The encoder therefore has
maximally separated, straight suspensions to create a large
spring constant for rotation about thez-axis.

Fig. 2 illustrates the trade-off between sensitivity and dy-
namic range. Encoders with a larger grating period have a
larger dynamic range, but low sensitivity (dotted line), while
the opposite is true for encoders with a finer pitch (solid line).
For a given period, the sensitivity can be improved by in-
creasing the number of grating periods that are illuminated,
again at the cost of a reduced range (dash-dotted line). We
can therefore use two gratings, or one grating with two dif-
ferent illumination conditions, to create a sensor with high
sensitivity and high dynamic range. The periodicity of the
encoder response can also be used to calibrate the relative
displacement of the gratings. This is useful in measurements
where the injector is interacting with a compliant structure.

The accuracy of the force measurements depends on the
spring constant of the movable index grating structure. The

Fig. 2. Tuning of force encoder’s sensitivity and dynamic range by: (I)
increasing half-grating pitch periodL = L1 for high dynamic range;
(II) varying number of grating fingersN = (N2, N3) for given L
for local high sensitivity enhancement within 2L injector displacement
(L1 = 20L2, N2 = 4N1,3).
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Fig. 3. Solid models for optical-encoder force sensor at static state (left) and the deformation of the supporting beams under central load on the force
probe integrated with the index micro-grating (right).

Table 1
Optical-encoder force-sensor design parametersa

Index micro-grating
Period, 2L (�m) 20 (10, 30)
Thickness,h (�m) 1.5

Supporting beam (spring)
Thickness,h (�m) 1.5
Length,L0 (�m) 850
Width, W (�m) 8, 15, 30
Spring constant (N/m) 2.2, 14.5, 115.2
Resonant frequency (kHz) 13.9, 35.8, 100.8

a Spring constants and resonant frequencies are simulated for a laterally
loaded spring structure (seeFig. 3) with beam widthW = 8, 15, and
30�m, thicknessh = 1.5�m and probe with lengthL0 = 80�m, and
tip sidewall areaS = 10�m2 and θ = 60◦.

spring constants were simulated for the geometry shown in
Fig. 3. A one-dimensional elastic model was used for the
doubly supported beam. For a center-loaded doubly clamped
beam, the relation between the applied forceF and the de-
flection alongx-direction is composed of both linear and

Fig. 4. Fabrication process of the optical-encoder injection force sensor: (A) deposition and patterning of a 0.5�m silicon-nitride layer on top of low
temperature oxide layer to form the fixed scale grating; (B) deposition of a 2�m sacrificial oxide for releasing the upper index grating with an array
of anti-sticking dimples formed by oxygen-plasma etching; (C) deposition and patterning a second 1.5�m silicon-nitride layer to form the upper index
grating, and deep reactive ion etch of the backside to form the optical interconnects for illuminating the gratings; (D) release of the injector with the
force sensor from the wafer along the dicing line; (E) the upper grating with the probe is released using buffered HF solution, and critical point drying
is performed to avoid unintended adhesion of the released structure to the substrate.

non-linear terms. The small-deflection linear bending term
is proportional to the beam moment of inertiahW3, while the
non-linear stretching term is proportional tohW, so thicker
beams have more linear characteristics than thinner beams.
For our force sensor, the transition from bending-dominated
behavior to stretching-dominated behavior occurs when the
deflection is about 10W. Thus for our penetration experi-
ments, the sensor is expected to operate mainly in the linear
range. With normally applied pressure over the two side-
walls of the probe tip, the stress and displacement vector
distribution across the device were simulated using the fi-
nite element method (FEM) for supporting beams of width
8, 15 and 30�m. The calculated spring constants and reso-
nant frequencies are listed inTable 1.

3. Fabrication process

As shown inFig. 4, the fabrication starts with the de-
position and patterning of a 0.5�m silicon-nitride layer
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Fig. 5. SEM of: (a) optical-encoder force sensor; (b) index and scale
gratings with 20�m pitch and 2�m vertical gap; (c) junction between the
gratings and the supporting beams, with embedded anti-sticking dimples;
(d) backside DRIE-ed optical illuminating aperture, with microinjector
appearing on the other side.

on the oxidized silicon wafer to form the fixed scale grat-
ing (10–30�m periods). Then 2�m low temperature oxide
(LTO) is deposited as the sacrificial layer to allow release of
the upper index grating with the integrated injector. A sec-
ond 1.5�m silicon-nitride layer is deposited and patterned
to form the upper index grating, and an array of anti-sticking
dimples is formed by oxygen-plasma etching of the LTO
before deposition of the second nitride layer. The injection
force characterizations presented in this paper were acquired
using optical encoders with probes without hollow channels,
but integrated hollow injectors can be realized by embedding
sacrificial LTO layer between the two silicon-nitride films of
the probe. A deep reactive ion etch (DRIE) step is performed
on the backside of the wafer to form the optical intercon-
nect for illuminating the gratings. Finally, the force-sensor
chip is removed from the wafer and released using buffered
HF followed by critical point drying (CPD) to avoid unin-
tended adhesion of the released structure to the substrate.
Fig. 5 shows scanning electron micrographs (SEMs) of the
injector with the integrated optical-encoder force sensor.

We selected silicon nitride (Si3N4) as the grating material
due to the need for stress-optimized thin films of good opti-
cal quality. The optical transmission of 1.5�m thick silicon
nitride, deposited under NH3-rich conditions, was measured
to be approximately 83% at 633 nm. The gratings therefore
only have weak amplitude modulation, and the transmission
encoder can be considered to consist of pure phase gratings.

4. Results and discussion

For DC calibration of the force sensor, we used a
SINTEF® piezoresistive microscale with a sensitivity of

Fig. 6. DC calibration of the force encoder using SINTEF® piezoresistive
microscale. Injections were performed on the posterior of a Drosophila
embryo.

∼150�g/mV to measure the injection force into Drosophila
embryos. The injections were performed both with a tra-
ditional, commonly used drawn-glass needle with a typi-
cal 75�m diameter tip and with the silicon-nitride force
encoder probe with a 30�m tip. The calibration set-up
is shown in Fig. 6. The MEMS probe requires∼40�N
to penetrate the newly hatched embryo.1 This is about
four times less than the force needed for penetration
with the conventional glass needle. In addition, the ni-
tride probe needs a shorter traveling distance to reach
penetration. Dynamic operation of the MEMS injector by
off-chip piezoelectric actuation[10] is expected to fur-
ther improve injection speed and cause less damage to the
embryo.

The spring constantk of a force encoder (W = 8�m,L =
10�m) was measured using the same set-up. The measured
value was 1.85 N/m (±8.65%), in reasonable agreement with
the simulation results. The discrepancy is assumed to be due
to over-etching of the springs supporting the movable upper
grating.

Fig. 7 shows the measurement set-up for the integrated
force sensor. The sensor was illuminated by a HeNe
laser (633 nm/4 mW) with spot sizes ranging from 60 to
160�m. The power in the first-order diffracted mode is
measured with a photodiode (embedded in a Coherent®

Beam-View Analyzer) placed 5 cm from the force encoder.
Spatial filtering was performed to minimize the crosstalk

1 Drosophila embryos 50 min after hatching are dechlorinated in 60%
bleach for 1.5 min and then rinsed thoroughly with water (20◦C). Properly
staged embryos are selected and desiccated for 15 min in a sealed glass
jar containing calcium sulfate (CaSO4) desiccant. Finally, embryos are
covered in Halocarbon 700 oil (Aqua-Air Industries Inc., Harvey, LA)
and ready for injection.
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Fig. 7. (a) Set-up for injection force sensing measurement. The microinjector is held fixed while the embryos are moved by a motorized stage. (b)
Close-up views of injection into Drosophila embryos.

between diffraction orders.Fig. 8 shows the measured
power of the first diffraction mode as a function of ab-
solute displacement of the injector. This displacement in-
cludes both the relative displacement of the gratings and
the displacement of the embryo membrane. The grating

Fig. 8. First diffraction mode power vs. injector displacement of a force
encoder withN = 10, L = 10�m and Ky = 1.85 N/m. The measured
injection force measured:F = 63�N. The inserts show typical diffraction
patterns at penetration depths ofd = 2L and d = 2L + 10.

displacement can be found from the known 20�m period
of the diffraction response. Using this calibration and a
spring constant of 1.85 N/m, we find an injection force
of 63�N. This assumes that the membrane behaves like
a linear spring under small deformation. The sensor as
tested here has a significant sensitivity aroundd = 2L,
but, since its output is ambiguous around the displace-
ment where penetration takes place, it cannot be used to
verify the assumption that the membrane deformation is
linear in the force. The solution is provided by illumi-
nating fewer periods of the force encoder. As shown in
Fig. 9, the same force sensor illuminated by a laser spot
size of 60�m (N = 3), has an improved dynamic range
(45% increase), at the cost of lower sensitivity (18%/�m
reduction). In this case, the diffraction is not ambiguous
around the penetration displacement, so both the pene-
tration force (48�N) and the embryo membrane defor-
mation (57�m) at penetration can be determined. In a
series of experiments, we found an average penetration
force of 52.5�N (±13.2%) and an embryo deformation
of 58�m (±5.2%). The measurements are in reasonable
agreement with the piezoresistive-scale calibration data,
demonstrating that the optical MEMS encoder force sensor
has sufficient sensitivity and dynamic range for monitor-
ing penetration and injection force dynamics in Drosophila
embryos.
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Fig. 9. Force sensing with large dynamic range withN = 3, L = 10�m andKy = 1.85 N/m. The measured embryo injection force isF = 48�N.

5. Conclusions

We present an integrated optical-encoder force sensor
with configurable sensitivity and sufficient dynamic range
for monitoring penetration and injection force in Drosophila
embryos. The encoder is based on transmission phase grat-
ings to optimize optical throughput and it is designed to have
low sensitivity to rotation and cross axis translation. Tun-
ability of the sensor can be achieved by either using arrays
of integrated optical encoders with various pitch periods or
varying the size of the optical illumination window on a
fixed period encoder. The periodicity of the encoder gratings
can be used for sensor self-calibration. These advantages of
the integrated optical MEMS encoder force sensor make it
a versatile tool for studying and controlling cell-membrane
penetration, and give it the potential to facilitate develop-
ment of microinjection and microsurgery instrumentation for
a wide range of applications.
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