Enhanced microcontact printing of proteins on nanoporous silica surface

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2010 Nanotechnology 21 415302
(http://iopscience.iop.org/0957-4484/21/41/415302)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.170.70.145
This content was downloaded on 29/07/2015 at 19:51

Please note that terms and conditions apply.
Enhanced microcontact printing of proteins on nanoporous silica surface

Ellen Blinka¹, Kathryn Loeffler², Ye Hu¹, Ashwini Gopal¹, Kazunori Hoshino¹, Kevin Lin¹, Xuewu Liu², Mauro Ferrari² and John X J Zhang¹

¹ Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78758, USA
² Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Service, Houston, TX 77031, USA

E-mail: John.Zhang@engr.utexas.edu

Received 14 June 2010, in final form 4 August 2010
Published 13 September 2010
Online at stacks.iop.org/Nano/21/415302

Abstract

We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethylsiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4–6 nm) and porous silica thicknesses (96–200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Microcontact printing (µCP) is a stamping based method for the dry transfer of molecules onto a surface [1–3]. The method, introduced by Whitesides in 1993 [4, 5] and extended to the transfer of protein molecules by Bernard et al in 2000 [6], has received much scientific attention as a means to immobilize proteins in controlled patterns for biomedical applications such as biosensors and immunoassays [7–13]. Patterning of biomolecules onto solid substrates is relevant to providing controlled biocompatible surfaces [14, 15]. Microcontact printing may be used to pattern multiple proteins on the same substrate, thus allowing for biological assays with greater diagnostic power [16–19]. A number of possible applications would be enabled if the same surface could be patterned with proteins of different types [20, 21]. In this paper, we compared the efficiency of protein transfer via µCP onto porous silica coated, 3-aminopropyltriethoxysilane (APTES) treated, glutaraldehyde (GA) treated, and untreated glass substrates.

Substrate surfaces are often functionalized to increase their affinity for specific proteins [13, 22]. Common functionalization procedures for preparing surfaces for protein binding utilize silane compounds with terminal functional groups that interact electrostatically or covalently with protein surface groups to increase protein adsorption. Two
common chemicals used for surface functionalization are APTES, chemical formula \((\text{NH}_2)-(\text{CH}_2)_3-\text{Si}(\text{OC}_2\text{H}_5)_3\), and GA, chemical formula \((\text{CHO}-\text{(CH}_2)_3-\text{CHO})\). The silane end of the APTES molecule binds covalently to surface silicon atoms, and the amino end of the molecule increases protein adsorption to the substrate through electrostatic interactions. The linear GA molecule is terminated on both ends by aldehyde groups and thus may be used to transform either the oxane bonds between silane and the substrate or the bonds between the organo-functional group of the silane and the organic molecule.

Previously, porous silica thin films have been used for the size-selective trapping of proteins from a biological complex, such as human serum. We have designed and characterized a large set of porous silica thin films with various pore nanotextures to enhance the capacity and efficiency of specific protein enrichment. Here we show that a thin layer of porous silica can be used to improve the efficiency of protein transfer to a surface via \(\mu\)CP. Porous silica can be deposited in an inexpensive procedure based on spin coating that requires no specialized techniques, such as sputtering or chemical vapor deposition. The porous silica here was created on solid substrates by using triblock copolymers as structural direction agents, mixed with silica solution and deposited over the surface. Once the porous silica was created, subsequent deposition of proteins was performed using microcontact printing. The study reported herein has potential applications such as patterned integrated micro-devices for immunoassay detection, micro-total analysis systems, and other biomedical point-of-care applications. Porous silica has long-term stability and is compatible with mainstream microfabrication processes in the semiconductor industry.

2. Experimental details

2.1. Preparation of porous silica

2.1.1. Fabrication of mesoporous silica thin films. A typical preparation of the porous silica thin film was carried out as follows (figure 1). The coating precursor was prepared, starting with self-assembly between polymer units to form the surfactant micelle and mixing it with soluble silicates (TEOS, tetraethoxysilane) in homogeneous, hydro-alcoholic solutions. The evaporation of solvent during spin coating results in an increase of the concentration of the polymer in the solution to exceed the critical micelle concentration and drives silica/copolymer self-assembly into a uniform thin-film nanophase. The average pore size and nanostructure throughout the thin film can be precisely tuned through the selection of polymer templates, molar ratio of silicate to polymer, deposition rate and calcination condition.

2.1.2. Characterization techniques. We utilized several characterization techniques to study the spin-coated mesoporous silica thin films. Through the use of a variable angle spectroscopic ellipsometer (J A Woollam Co. M-2000DI) and WVASE32 modeling software, the thickness of the thin films and their porosities were measured in the Cauchy model and the effective medium approximation (EMA) model, respectively. Ellipsometric optical quantities, the phase \((\Delta)\) and amplitude \((\psi)\), were obtained by acquiring spectra for 65°.
factors for each element of interest. The XRD pattern shown from the corrected peak areas and employing Kratos sensitivity software was used to determine the stoichiometry of samples over the full range of relative pore diameter.

The pressure in the analysis chamber was typically 2 Torr during data acquisition. Kratos XPS analysis was performed using a monochromated Al Kα x-ray source (hν = 1486.5 eV), utilizing a magnetic and electrostatic lens simultaneously and a multi-channel plate and delay line detector coupled to a hemispherical analyzer. The take-off angle of the photoelectrons was 90°. All spectra were recorded using a square aperture slot of 300 μm × 700 μm, and high-resolution spectra were collected with a pass energy of 20 eV. The pressure in the analysis chamber was typically 2 × 10⁻⁹ Torr during data acquisition. Kratos XPS analysis software was used to determine the stoichiometry of samples from the corrected peak areas and employing Kratos sensitivity factors for each element of interest. The XRD pattern shown in figure 2 illustrates a 3D honeycomb like nanostructure hexagonally arranged on the substrate, as confirmed by XRD, with peaks at (200) and (400), further verified through TEM imaging in figure 3. N₂ adsorption/desorption curves were generated using a Quantachrome Autosorb-3b BET Surface Analyzer (inset of figure 4) and the pore size distribution was calculated using the Barrett–Joyner–Halenda (BJH) method (figure 4) [32]. The adsorption/desorption isotherms describe a type IV isotherm with a H₂ hysteresis loop (sloping adsorption branch and nearly vertical desorption branch), indicating a nanoporous silica structure with interconnecting channels. Inflection points appearing at 0.40 < P / P₀ < 0.75 in figure 4 indicated the formation of ink-bottle shaped nanopores.

2.2. Preparation of chemically modified substrates

The chemical surface modification procedure can be seen in figure 5. Control substrates and those to be functionalized with APTES underwent piranha cleaning (H₂O₂/2H₂SO₄ v/v) for 5 min, followed by a triple alcohol rinse, before being dried in a 110°C oven for 10 min. Excluding the control, the samples were then placed in a 10% (v/v) glutaraldehyde (H₂O₂/2H₂SO₄ v/v) solution for 45 min and subsequently rinsed thoroughly with ethanol and removed to a 110°C oven for 1 h. Substrates to be functionalized with glutaraldehyde were first cleaned and functionalized with APTES as detailed above. Immediately after being removed from the oven, these substrates were placed in a 2.5% (v/v) glutaraldehyde/phosphate buffered saline (PBS) solution for 2 h. The substrates were then rinsed thoroughly with PBS and kept in PBS until just prior to stamping, when they were rinsed thoroughly with de-ionized water and dried under a N₂ stream.

The contact angle of functionalized substrates was measured with a goniometer to confirm functionalization. Values shown in table 1 are consistent with the literature [22, 27, 28, 33, 34]. It was observed that porous silica and untreated glass slides had smaller contact angles than chemically treated substrates.
Figure 4. N\textsubscript{2} adsorption/desorption analysis (A) pore size distribution and (B) isotherms of the porous silica thin films prepared using Pluronic F127.

Figure 5. Procedure for chemical surface modification of glass and silicon substrates.

Table 1. Contact angles of experimental substrates measured within 12 h of functionalization with goniometer (first ten angstroms).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Measured contact angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated glass</td>
<td>13 ± 3</td>
</tr>
<tr>
<td>APTES-functionalized glass (amine [-NH\textsubscript{2}] groups)</td>
<td>69 ± 7</td>
</tr>
<tr>
<td>Glutaraldehyde-functionalized glass (aldehyde [-CHO] groups)</td>
<td>59 ± 4</td>
</tr>
<tr>
<td>Porous silicaa</td>
<td>13 ± 5</td>
</tr>
</tbody>
</table>

a Porous silica layer for this measurement has 96 nm thickness, 57\% porosity, and 4.0 nm pore diameter.

apparatus was used to ensure proper alignment of the polymer stamp and the substrate and to allow for the application of consistent stamping pressures, generally in the range of 40 mg/0.5 cm2. Transferred protein layers were analyzed by fluorescence (Olympus BX51) and atomic force microscopy (AFM; Digital Instruments Series IV, Veeco). Protein layers deposited on porous silica coated silicon were also analyzed using SEM (Ziess SEM Neon 40), as seen in figure 6. A fluorescence image of an array of the printed protein can be seen in figure 7.

Rabbit IgG protein as imaged by AFM (figure 8), and SEM (figure 9) displays the microstructure of the patterned protein. The dimensions of IgG as reported by Lee \textit{et al} are 8.5 nm \times 14.4 nm \times 4 nm [36]. The height dimensions observed for the printed protein molecules are consistent with these accepted dimensions for the R-IgG, supporting the conclusion that the protein has retained its basic shape after stamping [36, 37].

3. Results and discussion

3.1. Comparison of protein deposition on two substrates

3.1.1. Porous silica substrate. First, we tested several porous silica conditions to determine the most suitable set of parameters for \(\mu\)CP. Samples shown in table 2 were used. It was found that porous silica exhibiting 4 nm pores at 57\% porosity and with a layer thickness in the range of 30–100 nm
Figure 6. (A) SEM and (B) AFM images of patterned proteins on porous silica on silicon.

Figure 7. Array of FITC-labeled R-IgG protein microcontact printed (diameter 20 μm) onto porous silica deposited on glass.

Table 2. Thickness and roughness of multiple porous silica layers measured with AFM (Digital Instruments Series IV). Layer parameters in bolded cells were found to result in the most successful protein transfer. Eight 1 μm² areas from the area where the regions bordered each other were taken and the height data was averaged.

<table>
<thead>
<tr>
<th>Porosity (%)</th>
<th>Thickness (nm)</th>
<th>Pore size (nm)</th>
<th>Contact angle (deg)</th>
<th>Protein layer thickness (nm)</th>
<th>Protein layer roughness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>547</td>
<td>6.3</td>
<td>11.1 ± 0.2</td>
<td>3 ± 2</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>39</td>
<td>611</td>
<td>4.0</td>
<td>13.3 ± 0.7</td>
<td>8 ± 5</td>
<td>3 ± 2</td>
</tr>
<tr>
<td>57</td>
<td>673</td>
<td>4.0</td>
<td>12.8 ± 0.8</td>
<td>8 ± 4</td>
<td>5 ± 2</td>
</tr>
<tr>
<td>32</td>
<td>561</td>
<td>2.0</td>
<td>23 ± 2</td>
<td>3 ± 2</td>
<td>1.5 ± 0.4</td>
</tr>
<tr>
<td>57</td>
<td>30</td>
<td>4.0</td>
<td>30 ± 3</td>
<td>5 ± 1</td>
<td>1.1 ± 0.6</td>
</tr>
<tr>
<td>39</td>
<td>96</td>
<td>4.0</td>
<td>13 ± 6</td>
<td>3 ± 1</td>
<td>3.4 ± 0.4</td>
</tr>
<tr>
<td>53</td>
<td>223</td>
<td>4.0</td>
<td>15 ± 2</td>
<td>5 ± 3</td>
<td>5.0 ± 0.5</td>
</tr>
</tbody>
</table>

provides for the most effective protein transfer in terms of consistency of the full transfer of the stamping pattern, stamped protein layer thickness and roughness. Protein layers stamped on the porous silica layers with parameters as listed in table 2 were analyzed with AFM microscopy. As porosity and pore size decrease, the porous silica layer approaches non-porous silica and the advantages of the pores are lost.

Figure 8. (A) Atomic force microscopy (AFM) of rabbit immunoglobulin G (R-IgG) protein on porous silica, indicating a height of (left peak) 16 nm (right peak) 8 nm. Accepted dimensions of R-IgG are 14.5 nm × 8.5 nm × 4.8 nm (B) plot of height data for inset image.

For proteins deposited onto porous silica substrates, the resulting height data was divided into regions of protein coverage and regions of background. Eight 1 μm² areas from the area where the regions bordered each other were taken and the height data was averaged over these. The background height was subtracted from the protein layer height to give the data in table 2. A similar procedure was repeated for roughness measurements. For example, to calculate the protein thickness for the sample shown in figure 8, the 1 μm² areas had an average height of 4.7 nm, from which the background height of −3.2 nm was subtracted to give a protein layer height of 7.9 nm. From analysis under a bright field microscope, it was concluded that porous silica layers with large pore sizes trap particles of the PDMS stamp, contaminating the transferred protein. Also, as the porous silica layer thickness increases,
the surface of the layer develops wide undulations that disrupt conformational contact of the stamp and decrease protein transfer. For these reasons, porous silica layers with pore sizes at or above 6 nm and with layer thicknesses greater than about 200 nm were found to be unfavorable to protein transfer.

Porosity silica substrates have an advantage over chemically functionalized substrates in that they can be uniformly processed. In order to print proteins onto porous silica substrates, the hole dimensions of the porous layer should be similar to or smaller than the smallest dimension of the protein (i.e. in this study we used 4 nm holes, and the smallest dimension of the R-IgG protein was 4 nm). Larger pore sizes indicated the diffusion of proteins into the pores with a layer thickness smaller than that of the protein size. These results are similar to those reported in solution based experiments [39]). The porosity and thickness of the porous silica can be held constant by controlling the processing conditions.

3.1.2. Chemically modified substrates. Here we compare μCP on porous silica and chemically treated surfaces. The porous silica layer used has parameters as found in the previous section 3.1.1: 4 nm pores at 57% porosity, with a layer thickness in the range of 30–100 nm. Results are shown in figure 10.

It was observed that completeness of transfer is the highest for porous silica, figure 10 (D-2), and APTES-functionalized surfaces, figure 10 (B-2), partial for the untreated surfaces, figure 10 (A-3), and low for the glutaraldehyde-functionalized surfaces, figure 10 (C-3). Relative to the chemically modified and untreated substrates, the porous silica coated substrates provided for thicker and more uniform protein layers. The layers on glutaraldehyde-functionalized surfaces are thin, figure 10 (C-2), as are those on APTES, figure 10 (B-2), averaging 3 and 2 nm thick, respectively, compared to the 5 nm thickness of the layers on porous silica, as seen in table 3. The average 5 nm protein layer on porous silica is consistent with protein monolayers.

Microcontact printing was used to transfer proteins onto porous silica and chemically functionalized substrates that were prepared three months in advance. The results for porous silica substrates remained consistent with previous results, indicating complete transfer of proteins. The transfer of proteins onto chemically modified substrates was similar to the control slides with non-uniform deposition of proteins onto the substrate.

Table 3. Thickness and roughness of R-IgG protein layers deposited on various substrates. (Measurements taken with Digital Instruments Series IV AFM.)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Protein layer thickness (nm)</th>
<th>Protein layer roughness (nm)</th>
<th>Number of circles</th>
<th>Number points per circle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous silica</td>
<td>5 ± 2</td>
<td>0.6 ± 0.3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Untreated glass</td>
<td>4 ± 1</td>
<td>1.0 ± 0.9</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>APTES-treated glass</td>
<td>3 ± 2</td>
<td>1.0 ± 1.0</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Glutaraldehyde-treated</td>
<td>2 ± 1</td>
<td>0.5 ± 0.7</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Protein layers observed on the chemically treated substrates were thinner, 2–3 nm thick, than the smallest dimension of the R-IgG protein, 4 nm. This indicates that the R-IgG protein, which is known to bind with surfaces through hydrophobic interactions [38], unfolds to maximize favorable interactions with the APTES (71° contact angle) and glutaraldehyde (56° contact angle) coated surfaces, as shown in table 1 [37]. The roughness of the protein film deposited on untreated and APTES-modified substrates is 1 nm on average, while the layer on glutaraldehyde-modified substrates averages half a nanometer, though its maximum value is 1.2 nm. The layer on porous silica is smoother on average at 0.6 nm, with a range of 0.3–0.9 nm. Protein layers on untreated glass and APTES-treated glass both exhibited incomplete coverage, while protein circles on glutaraldehyde-treated glass and porous silica were both filled. Arrays of 20 μm diameter circles printed on porous silica surfaces were observed to be fully printed while the complete pattern was rarely transferred to the other chemically treated substrates.

Chemical modifications of porous silica substrates have been demonstrated previously for solution based experiments, indicating better adsorption of protein [29]. Chemical modification of porous silica may increase the adsorption of proteins due to the presence of both chemical and physical forces attracting the proteins. Compared to the chemically modified and untreated substrates, the porous silica coated substrates enhanced protein deposition, resulting in thicker and more uniform protein layers.

3.2. Integrated patterned immunoassay system

To demonstrate that protein function is retained after immobilization, porous silica was used as the basis for a patterned immunoassay. FITC-labeled R-IgG proteins were stamped onto a porous silica surface with 57% porosity, 4 nm pore size, and 30 nm layer thickness, as described above.
Figure 10. Fluorescence images of 15 μm diameter circles of FITC-labeled R-IgG protein deposited with microcontact printing onto (A) untreated glass substrate, (B) APTES, (C) glutaraldehyde and (D) porous silica treated glass slides. AFM images of corresponding fluorescence images were performed as well as other portions of patterned substrate.

Figure 11. Steps for creation of patterned immunoassay. Labels (A) and (B) correspond to the fluorescence images in figure 12.

As exhibited by figure 11, the surface was then blocked with bovine serum albumin (BSA) and incubated with TRITC-labeled anti-R-IgG protein suspended in PBS for 20 min. Fluorescence of the TRITC-labeled secondary protein is observed in the areas where the primary protein was stamped, as seen in figure 12.

This method will be useful for patterned integrated micro-devices; for example, it could be used to pattern multiple biomolecules on a single substrate for the creation of parallel assays utilizing different biomolecules, or layered with light emitting diodes to create self-illuminating sensors for simpler analysis of analyte binding. Porous silica has long-term stability and is easy to work with; it is thus compatible with subsequent manufacturing processes, such as the addition of a microchannel.

4. Conclusions

We describe nanoporous silica surface functionalization as an alternative method to the chemical treatment for enhanced protein adsorption suitable for molecular immunoassay. A microcontact printing technique was developed for protein deposition and patterning on porous silica, as well as on surfaces with chemical modification, including those silanized with APTES and glutaraldehyde. Compared to the chemically modified and untreated substrates, the porous silica coated substrates enhanced protein deposition, resulting in thicker and more uniform protein layers. An average 5 nm thick protein monolayer was consistently deposited on porous silica. Protein layers observed on the chemically treated substrates were
Figure 12. (A) Stamped FITC-labeled R-IgG on porous silica viewed under FITC (1) and TRITC (2) filters of fluorescence microscope. (B) Substrate as viewed under FITC (1) and TRITC (2) filters of fluorescence microscope after 20 min blocking with BSA followed by 20 min incubation with 10 μg ml⁻¹ solution of TRITC-labeled anti-R-IgG.

thinner than the smallest dimension of the stamped protein, indicating possible denaturation. A patterned two-antibody immunoassay was developed to demonstrate the significant potential of porous silica in the area of printable and robust biological sensors.

Acknowledgments

We gratefully acknowledge the support of the National Science Foundation (CAREER 0846313), the Department of Defense (DODW81XWH-09-1-0212), NASA (NN06HE06A), the National Institute of Health (RO1CA128797), the University Cooperative Society (URF 2009A31247), and the State of Texas Emerging Technology Fund, as well as the Microelectronics Research Center located on the University of Texas’ J J Pickle research campus.

References

[38] Sun X H, Yu D Q and Ghosh R 2009 \textit{J. Membr. Sci.} \textbf{344} 165–71